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Abstract: The complex nature of slope engineering presents challenges in accurately predicting slope stability with 

traditional methods. Identifying the appropriate techniques for slope stability prediction is essential in mitigating 

the risks associated with slope failures. This study conducts a thorough analysis of two boosting machine learning 

models: Adaboost and LightGBM. By evaluating a wide range of hyperparameters, the research aims to discover 

the optimal settings for each model, ultimately leading to effective solutions.Six potentially relevant features were 

identified as key indicators for prediction: height (H), pore water ratio (ru), unit weight (Ƴ), cohesion (c), slope angle 

(β), and angle of internal friction (ɸ). The models were assessed using evaluation indicators such as AUC and 

accuracy, revealing that LightGBM significantly outperformed the Adaboost model, achieving an impressive AUC 

of 0.878 and an accuracy of 0.803. Furthermore, real-world engineering examples illustrate the effectiveness of 

LightGBM as a predictive tool for slope stability. Its enhanced capacity and efficiency in deformation prediction 

positions it as a leading instrument for accurate forecasting in this field. To deepen the understanding of these 

models, a comprehensive analysis of parameter sensitivity was also conducted, highlighting the most significant 

characteristics contributing to reliable slope stability predictions. 
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I.   INTRODUCTION 

The complexities inherent in the physical state of soil pose significant challenges in accurately estimating slope stability. 

The increasing frequency of slope failures, which result in considerable economic and social repercussions, has garnered 

the attention of both researchers and engineers. To mitigate or prevent such adverse outcomes, it is essential to conduct 

comprehensive slope stability analyses and to implement effective stabilization measures. A deeper understanding of the 

mechanisms that contribute to slope failure is critical for successfully addressing these challenges. Slope engineering is 

characterized by its complexity, nonlinearity, dynamism, and inherent uncertainties. Various geological and engineering 

factors—such as unpredictability, fuzziness, and variability—significantly influence slope stability. It is important to 

recognize that the relationship between slope stability and its influencing factors is predominantly non-linear. Current trends 

in slope stability research indicate a shift from traditional deterministic approaches towards a more holistic understanding 

of the uncertainties arising from the diverse range of slope characteristics. Traditional methods, including the limit 

equilibrium method, discontinuous deformation analysis, and finite element method, often fall short in accuracy due to the 

intricate mechanisms that affect slope stability [1, 2]. Nonetheless, ongoing efforts in numerical and analytical modelling 

aim to reduce potential losses by enabling precise predictions, thereby facilitating the implementation of appropriate 

preventive actions. 

In recent years, advancements in computational techniques have led researchers to increasingly employ machine learning 

as a robust alternative for slope stability analysis. These methods evaluate slope stability by analyzing features such as slope 

geometry and material properties, producing significant results. For instance, Lin et al. [3] conducted a comprehensive 

comparative study of 11 machine learning models, focusing on six critical slope factors. Samui [4] explored the application 

of support vector machines, utilizing them to predict the factor of safety as a regression model while also classifying the 
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slope status. Similarly, Cheng et al. [5] integrated the K-nearest neighbor method with a Bayesian framework to enhance 

slope stability predictions. Fattahi [6] adapted three models of the adaptive neuro-fuzzy inference system (ANFIS), namely 

the subtractive clustering method (SCM), grid partitioning (GP), and fuzzy c-means clustering (FCM), for accurate factor 

of safety predictions. Hoang et al. [7] undertook a comparative analysis utilizing advanced machine learning methods, 

including least squares support vector machines (LSSVM), radial basis function neural networks (RBFNN), and extreme 

learning machines (ELM), for slope stability evaluation. Das et al. [8] applied a differential evolution neural network to 

carry out slope stability analysis, developing both classification and regression models. Additionally, Manouchehrian et al. 

[9] created a regression model for predicting slope stability using genetic algorithms (GA). Erzin et al. [10] conducted a 

comparative study aimed at predicting the factor of safety (FOS) of homogeneous finite slopes through multiple regression 

(MR) and artificial neural networks (ANN). Qi et al. [11] proposed and compared six artificial intelligence approaches, 

including logistic regression (LR), random forest (RF), support vector machine (SVM), gradient boosting machine (GBM), 

decision tree (DT), and multi-layer perceptron neural network (MLPNN), integrating the firefly algorithm (FA) for hyper-

parameter tuning. Karir et al. [12] investigated various machine learning models, such as gradient boosting, extreme gradient 

boosting (XGB), support vector regressors (SVR), random forests (RF), and artificial neural networks (ANN) for predicting 

factors of safety.  

Since, there are limited studies that focus on boosting machine learning techniques for slope stability prediction. Therefore, 

it is necessary to explore additional techniques that are better suited for analyzing nonlinear slope behavior. Additionally, 

there is no comprehensive comparison of classifier boosting algorithms for predicting slope stability. To improve the 

accuracy of predicting nonlinear slope behavior and establish a simple model that can be widely utilized, it is essential to 

continue exploring boosting algorithms that are better tailored for analyzing nonlinear slope behavior. 

II.   MATERIALS AND METHODOLOGY 

A. Dataset Preprocessing and Visualization 

In developing a classification model for slope stability, it is imperative to identify and select features that have a significant 

influence on stability outcomes. This process involves employing strategic feature selection principles that mitigate 

dimensionality-related challenges and enhance the model's efficiency. By focusing on essential features, we can minimize 

computational complexity and ensure that the model highlights the most critical factors affecting slope stability, thereby 

improving overall predictive performance. The features of particular importance in this analysis include pore water ratio 

(ru), height (H), unit weight (Ƴ), cohesion (c), slope angle (β), and angle of internal friction (ɸ). This study analyzes a 

dataset consisting of 444 slope stability cases to predict slope status, classified as either stable (1) or unstable (0) as shown 

in Figure 1. To ensure the integrity of the analysis, the dataset is normalized to eliminate discrepancies related to scale, 

units, and distributions. This normalization process is essential for enhancing model accuracy and its ability to generalize 

effectively to new and unseen data. 

𝑦𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑥− 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥− 𝑥𝑚𝑖𝑛
    (1) 

where, y is a normalized input parameter, x is the original input parameter, xmax is the maximum parameter and xmin is the 

minimum parameter. The distribution and variability of each input variable on slope status are shown in Figure 2. 

 

Figure 1: Dataset Pie Chart 
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Figure 2: Correlation Matrix of Dataset 

The violin plots illustrated in Figure 3 provide a comprehensive overview of the distribution and density of the dataset 

across various categories. In a violin plot, the width at any given point indicates the density of the data, with thicker sections 

representing areas of high density and thinner sections indicating lower density. The median value of the data is shown by 

the horizontal line within each violin. Upon analyzing these plots, it is evident that the variables Ƴ, ɸ, β, and ru exhibit a 

wide distribution pattern, which is reflected in the diverse shapes of their corresponding violins. This suggests that the data 

points for these variables are quite dispersed. Conversely, the variables c and H demonstrate a more densely clustered 

distribution, as evidenced by their narrower violin shapes, highlighting a higher frequency of data points at specific values. 

This comparative analysis of the violin plots enhances our understanding of the underlying data distribution in the dataset. 

 

Figure 3: Violin Plots showing distribution of slope cases 

B. Model Development and Optimization  

This study examines the use of two boosting machine learning algorithms, Adaboost and LightGBM, for slope stability 

classification. To evaluate model performance, the dataset is divided into a training set (70% or 311 cases) and a testing set 

(30% or 133 cases). The training set is used to train the model and fine-tune hyperparameters, while the testing set assesses 

the model's ability to generalize to new data. Various hyperparameter combinations are explored to identify the optimal 

settings, which are then applied for predictions on unseen data. The model's performance is evaluated using metrics such as 

Area Under the Curve (AUC), Accuracy, and Sensitivity. The AUC provides a comprehensive view of predictive capacity, 

while high sensitivity indicates effectiveness at detecting positive instances. Hyperparameter optimization results and 

predictions are detailed in Table 1. 
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TABLE I: OPTIMAL HYPERPARAMETER SETTINGS OF EACH MODEL 

Model Hyperparameters 
Optimal 

Hyperparameters 
AUC Accuracy Sensitivity 

AdaBoost 

learning_rate = [0.1, 0.01] 0.01 

0.762 0.706 0.781 n_estimators = 

[50,100,200,300,400,500] 
200 

LightGBM 

learning_rate = [0.1, 0.01] 0.01 

0.878 0.803 0.828 n_estimators = 

[50,100,200,300,400,500] 
400 

III.   RESULTS AND DISCUSSION 

This study employs AdaBoost and LightGBM classifiers to evaluate their performance in predicting slope stability. It is 

important to note that the performance of a classifier is significantly influenced by the Area Under the Curve (AUC), where 

a value of 1.0 indicates optimal performance. The ROC curves of the classification models (Figure 4) reveal that the AUC 

for AdaBoost is 0.762, while LightGBM has an AUC of 0.878. The differences in AUC values among the classifiers are 

attributed to the variations in their underlying algorithms, model complexity, and their effectiveness in capturing the 

relationships between the features and the target variable. The results indicate that LightGBM demonstrates superior AUC 

values, suggesting better discriminatory ability and overall performance compared to AdaBoost. Figure 5 presents the 

confusion matrix for both classification models, showing that the total number of misclassifications for AdaBoost is 32, 

while for LightGBM, it is 28. Sensitivity analysis, illustrated in Figure 6, further highlights the disparities in performance 

among the classifiers. From Figure 6, it can be inferred that the LightGBM model exhibits a high sensitivity with a score of 

0.828, whereas the AdaBoost model has a comparable sensitivity score of 0.781. These variations emphasize the importance 

of selecting the appropriate classifier based on the specific characteristics of the dataset and the problem being addressed in 

order to achieve optimal classification results. Overall, it is evident from the results that the LightGBM classification model 

outperforms the AdaBoost classifier due to its superior ability to discriminate and better rank positive samples, despite 

having lower sensitivity. 

IV.   CONCLUSION 

This study presents a comparative analysis of two boosting machine learning classifiers, specifically Adaboost and 

LightGBM, in assessing the stability of 444 slope cases. The analysis utilizes six features—H, ru, β, c, Ƴ, and ɸ—for the 

prediction and generalization of classification models. Based on the evaluation of receiver operating characteristic (ROC) 

curves, the LightGBM classifier exhibited a significantly higher area under the curve (AUC) compared to the Adaboost 

classifier. This finding indicates that LightGBM demonstrates superior overall performance in distinguishing between stable 

and unstable slopes. Furthermore, LightGBM's model showcased high sensitivity in its predictions, effectively identifying 

true positives while minimizing false negatives. This attribute is particularly critical in applications where overlooking a 

positive case can lead to serious consequences. The results highlight the complexity involved in evaluating slope stability 

and emphasize the necessity of considering a comprehensive range of characteristics rather than relying solely on individual 

metrics for precise forecasting. As such, boosting classifiers like LightGBM represent a compelling alternative for slope 

stability predictions, especially in scenarios that demand interpretability and the management of imbalanced datasets. 

 

Figure 4: ROC Curves of of classification models on testing dataset 
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Figure 5: Confusion Matrix of classification models 

 

Figure 6: Sensitivity of classification models 
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